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a b s t r a c t

This article further elaborates the findings by Reniers et al. in 2007 and 2008. A discrete-time approxima-
tion is presented to determine the severity of a major accident threat triggering immediate evacuation
and its expected resulting costs. By implementing the proposed mathematical model, precautionary
evacuation decision problems can be tackled in a realistic way, i.e., allowing for major accident threats
vailable online 23 August 2008

eywords:
ptimal stopping

ntervention decisions

with limited duration. Furthermore, the model is moulded into a working procedure which was used to
develop software to solve the suggested algorithms. A case-study is provided and the results obtained by
application of the methodology are discussed. Using a (realistic) discrete-time approximation computer
simulation, we found that ignoring option characteristics may produce suboptimal intervention decisions
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in shutdown settings.

. Introduction

In this introductory section some background information from
revious articles is summed up and is provided for increasing the
nderstanding and the legibility of the next sections. Reniers et al.
1] describe a simple case of an industrial company that has a sin-
le mode to shutdown the ongoing production processes. In these
implified settings, the authors derive an analytical solution for the
ree boundary triggering immediate evacuation in the particular
ase of a threat with possibly infinite duration. The analysis was
hen broadened [2] to industrial companies having several modes
o stop their production processes, differing with respect to the
esulting costs, and with respect to the required time and person-
el to complete the shutdown operations. The basic decision model
as thus extended to determine the optimal time and the opti-
al mode to shutdown ongoing activities in industrial settings. A

ontinuous-time optimal stopping model was developed to support
he precautionary evacuation decision problem.

The authors found that ignoring option characteristics may

roduce suboptimal intervention decisions. Moreover, greater
ncertainty with respect to the evolution of the estimated sever-

ty of the threat may give rise to stopping the production processes
ater, but possibly in a more intervening manner. Whereas the exis-

∗ Corresponding author. Tel.: +32 3 220 41 82; fax: +32 3 220 49 01.
E-mail addresses: ARGoSS@ua.ac.be, b.j.m.ale@tudelft.nl (B.J.M. Ale).
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ence of an additional and more economic (but slower) shutdown
ode might encourage the decision maker to stop the production

rocesses earlier, in a less intervening manner, the availability of
n additional and faster (but less economic) shutdown procedure
ight stimulate the decision maker to stop the production pro-

esses later, in a more intervening manner.
The probability of an accident actually taking place between the

ime of notification (t = 0) and the maximum anticipated duration
f the threat (t = T) is given by a Poisson arrival rate �:

�(t) = �, ∀t < T
�(t) = 0, ∀t ≥ T

At any time t, if a (major) accident has not occurred before, there
s a probability � dt that it will occur during the next short interval
f time dt. In case an accident scenario has not occurred by time T, it
an be assumed the emergency situation is again under control and
here will be no major accident at all. The corresponding probability
ensity function of an accident actually taking place at time t is
e−�t.
Furthermore, the severity of the potential accident is initially
ssessed to be x(0) = x0. This severity represents the worker risk1 in
ase an accident actually takes place and no precautionary evacu-
tion decision has been made.

1 The worker risk is the worst-case risk that would result for an average installa-
ion operator of the installation under consideration.

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:ARGoSS@ua.ac.be
mailto:b.j.m.ale@tudelft.nl
dx.doi.org/10.1016/j.jhazmat.2008.08.049
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The evolution of this estimated severity over time, however, is
tochastic and depends on the information that safety management
ill have obtained by the actual time of the decision. The estimated

everity of the threat is assumed to follow a geometric Brownian
otion without drift, i.e., dx = �x dz, with � the variance and dz the

ncrement of a Wiener process. This geometric Brownian motion is a
arkov process with independent increments. Moreover, percent-

ge changes in x, i.e., �x/x, are normally distributed with mean 0
nd variance �2 dt, indicating no reason exists to a priori assume the
stimated severity of the potential accident will deviate (positively
r negatively) from its initial estimate x0. Concerning the geomet-
ic Brownian motion and its properties, the interested reader is
eferred to Dixit and Pindyck [3], Hull [4], Neftci [5], and Ohnishi
6].

In order to obtain an analytical, closed-form solution for the
everity of the threat triggering immediate evacuation, x2, and for
he expected resulting costs, F(x), the duration of the threat was
ssumed by Reniers et al. (loc. cit.) to be possibly everlasting2.

In this paper, we present a discrete-time approximation to deter-
ine x2 and F(x) without having to make this quite stringent

ssumption.
Reniers et al. (loc. cit.) further indicate that if the maximum

uration of the threat is finite and given by T, a dynamic opti-
al intervention strategy can be determined by solving the partial

ifferential equation3:

�2x2

2
∂2F(x, t)

∂x2
+ ∂F(x, t)

∂t
− (� + �)F(x, t) + ˛�Wx = 0 (1)

with:

⎧⎪⎪⎨
⎪⎪⎩

˛ = the monetary value assigned to the unit of
worker risk for the worst − case scenario

W = the number of industrial workers
required during shutdown operations

� = discount rate
ubject to a number of boundary conditions, depending on the
ssumptions made with respect to the feasible shutdown modes.
e will discuss in this paper a numerical procedure allowing

btaining an approximate solution to Eq. (1) without having to
ssume a possibly everlasting threat. We will derive an analytical
losed-form solution for x2 and F(x) for this particular case.

The next section briefly introduces a number of alternative
pproaches and discusses their respective advantages and draw-
acks. An explicit finite difference approximation to the basic and
xtended continuous-time decision model is derived in Section 3.
ection 4 presents a methodology that can be used to solve the
esulting finite difference algorithms. Section 5 discusses a case-
tudy and its results. Section 6 concludes this paper.

. Numerical methods
.1. Finite difference methods

The general idea underlying finite difference methods is to
implify the differential Eq. (1) by transforming the continuous

2 As long as the estimated severity of the potential major accident remains below
he trigger level x2, it is optimal to defer the evacuation decision and obtain addi-
ional information on the severity of the threat. When the estimate of the severity
equals the threshold x2, immediate evacuation will result.he expected costs of a
ynamic optimal intervention strategy, assuming that the duration of the threat can
e everlasting, and provided that a major accident has not taken place earlier, is
oted by F(x).
3 Using Ito’s Lemma, Pauwels [7] shows that F(x, t) must satisfy the second order

artial differential equation expressed in Eq. (1). Note that in Eq. (1), t is not left
ut. If a possibly everlasting threat is assumed, t can be left out of the analysis (cfr.
eniers et al. (loc. cit.)).
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ariables x and t into discrete variables, and by replacing the
artial derivatives ∂2F(x,t)/∂x2 and ∂F(x,t)/∂t by finite differences.
herefore, a finite difference mesh is constructed by dividing the
aximum duration of the threat into M equally spaced intervals of

ime �t. Furthermore, at every discrete point in time m �t, with
≤ m ≤ M, (N + 1) possible estimates of the severity n�x are con-

idered, with 0 ≤ n ≤ N. The resulting set of difference equations
re solved iteratively, starting at the end of the mesh and stepping
ack through time: t = T → t = (T − �t) → t = (T − 2�t) → . . . → t = 0.

The explicit finite difference method [8] results in (N + 1) equa-
ions, each in one unknown, to be solved at every point in time. The
mplicit finite difference method [9] requires a system of (N + 1)
imultaneous equations in (N + 1) unknowns to be solved at every
oint in time. As such, the implicit alternative is computationally
ore demanding than its explicit counterpart. However, a draw-

ack of the explicit finite difference method consists in the fact
hat its stability and convergence depend on the length of �t, rel-
tive to the length of �x. More precisely, a decrease in �x in order
o improve the accuracy of the obtained results requires a con-
iderably larger increase in the number of time periods M to be
onsidered [10]. The stability and convergence of the implicit finite
ifference method are unconditional, implying that the length of
he interval �x can be refined without having to significantly
ncrease the number of time steps. Since fewer time steps have to be
onsidered to obtain the same level of accuracy, implicit finite dif-
erence methods are more efficient. Hull [4] and Hull and White
11] demonstrate that these disadvantages of the explicit finite
ifference model can be partly overcome by constructing a finite
ifference grid in y = ln(x) rather than in x itself, and by choosing
y = �

√
3 �t.

.2. Lattice methods

Binomial lattice methods assume that the underlying stochas-
ic variable x follows a discrete binomial jump process, implying
hat x might jump up or down in each time period with a particu-
ar probability. As such, this process is completely defined by three
arameters, i.e., the size of an upward jump, the size of a down-
ard jump, and the probability of an upward (or downward) jump.

hese parameters are to be set so that the mean and variance of
hanges in x over a particular period of time match those of the
eometric Brownian motion. As there are three parameters to be
etermined, but only two values to be matched, the third parameter
an be chosen freely.

Binomial lattice models can be extended to trinomial models,
here the stochastic variable may remain unchanged, jump up

r jump down with a particular probability in each time period.
uch (trinomial) models provide a better approximation to the
ontinuous-time geometric Brownian motion for the same number
f time steps, and are more flexible [12].

Although binomial and trinomial lattice techniques are intu-
tively more appealing than finite difference methods, it can be
hown that they are special cases of explicit finite difference
chemes [10].

. A mathematical model of an explicit finite difference
pproximation

To improve the accuracy of the explicit finite difference approx-
mation and increase its computational efficiency, we construct a

nite difference model with y = ln(x) as the underlying stochastic
ariable, rather than x itself [4]. Taking into account that

∂F

∂x
= ∂F/∂y

x
(2)
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Fig. 1. The finite difference grid.

and

∂2F

∂x2
= (∂2F/∂y2) − (∂F/∂y)

x2
, (3)

his change of variables reduces Eq. (1) to a partial differential equa-
ion with constant coefficients:

�2

2
∂2F(y, t)

∂y2
−�2

2
∂F(y, t)

∂y
+ ∂F(y, t)

∂t
− (� + �)F(y, t) + ˛�Wey = 0

(4)

To approximate the partial derivatives ∂2F/∂y2, ∂F/∂y and ∂F/∂t
ith finite differences, a finite difference grid is constructed by
ividing the time horizon T into M equally spaced intervals of time
t, and the considered interval for values of y up into discrete

ntervals of equal length �y. As illustrated in Fig. 1, we restrict our
ttention to values of y in the interval −N1 �y ≤ y ≤ N2 �y. By doing
o, we truncate the infinite mesh at y = −N1 �y and at y = N2 �y. This
runcation introduces an error in the analysis. However, by taking
1 and N2 sufficiently large, these errors will not be significant, as

he boundary values for large y and large negative y will be very
lose to the boundary conditions at infinity [10].

Let F(y,t) = F(n �y, m �t) = Fn,m, where −N1 ≤ n ≤ N2 and
≤ m ≤ M. Using a symmetric central finite difference approx-

mation for ∂F/∂y and ∂2F/∂y2, and a forward finite difference
pproximation for ∂F/∂t, yields

∂F

∂y
≈ Fn+1,m+1 − Fn−1,m+1

2 �y
, (5)

∂2F

∂y2
≈ Fn+1,m+1 − 2Fn,m+1 + Fn−1,m+1

(�y)2
, (6)

∂F

∂t
≈ Fn,m+1 − Fn,m

�t
. (7)

lugging Eqs. (5)–(7) in the partial differential Eq. (4) reduces the
atter to the difference equation

n,m = ˚1Fn+1,m+1 + ˚2Fn,m+1 + ˚3Fn−1,m+1 + ˛�W �ten �y (8)

ith:

�2 �t �2 �t

1 =

2(�y)2
−

4 �y
, (9)

2 = 1 − (� + �)�t − �2 �t

(�y)2
, (10)
s Materials 164 (2009) 490–496

3 = �2 �t

2(�y)2
+ �2 �t

4 �y
. (11)

The values of F at t = M �t and at y = −N1 �y are given by

n,M = 0, − N1 ≤ n ≤ N2, (12)

−N1,m = 0, 0 ≤ m ≤ (M − 1). (13)

Condition (12) states that if an unwanted event has not occurred
efore time T, it cannot occur afterwards; condition (13) expresses
hat in case the estimated severity of the threat is extremely low,
he decision maker will decide not to evacuate.

If the threat is estimated to be very severe, i.e., in case y = N2 �y,
he decision maker will decide to evacuate the industrial workers
mmediately. Furthermore, in case several shutdown modes exist,
he decision maker will choose that mode resulting in the smallest
otal expected costs.

Therefore, as far as the basic decision model (with a single shut-
own mode) is concerned, we have

N2,m = TCN2,m 0 ≤ m ≤ (M − 1), (14)

here TCN2,m refers to the evacuation costs TC(x,t), with x = eN2�y

nd t = m�t.
In the extended decision model (with multiple shutdown

odes), we have

N2,m = min(TCN2,m
s ; TCN2,m

f ) 0 ≤ m ≤ (M − 1), (15)

here TCN2,m
s and TCN2,m

f
refer to the costs of a slow (TCs(x,t)) and

ast (TCf(x,t)) shutdown, respectively, with x = eN2 �y and t = m �t.

. Designing a software working procedure

To develop a software decision model, several steps have to be
onceived using the mathematical equations elaborated in the pre-
ious section. Implementing such a methodology should allow to
btain a solution for the free boundary, x2, and for the expected
osts of a dynamic optimal intervention strategy, F(x,0), without the
ssumption of a possibly everlasting threat. The latter makes it pos-
ible to develop user-friendly software that can be used by decision
akers to more rationally deal with taking precautionary evacua-

ion decisions in large industrial organizations where hazardous
rocesses are involved. Fig. 2 illustrates the solution procedure.

The different stages displayed in Fig. 2 are more thoroughly
xplained hereafter.

tage 1 calculate the values of Fn,m at the end of the grid, i.e., for
m = M and −N1 ≤ n ≤ N2, using Eq. (12).

tage 2 step back in time to m = (m − 1), and use condition (14) or
(15) – depending on the model – to determine FN2,m. Use
Eq. (8) to calculate the values of Fn,m for n = N2 − 1, N2 − 2,
. . ., −N1 + 1. The value of Fn,m for n = −N1 is obtained directly
from condition (13).

tage 3 In the basic model, compare each of the obtained values for
Fn,m to the costs TCn,m that would occur if the immediate
shutdown of the production processes (and evacuation of
the workers) would be decided at that point in time. In case
TCn,m < Fn,m, it is optimal to evacuate and Fn,m is set equal to
TCn,m. In the opposite case, the previously calculated value
for Fn,m remains.
In the extended model, compare each of the obtained
values for Fn,m to the costs that would occur in case it is
decided to shutdown the production processes in an opti-
mal (i.e., slow or fast) way at that point in time. In case
min(TCn,m

s , TCn,m
f

) < Fn,m, it is optimal to evacuate and Fn,m
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Table 1
Input parameter values

Parameter

Immediate evacuation costs, ci 2,500,000D
Evacuation costs per unit of time

during shutdown, cd

5,000D per hour

Required time to execute shutdown, L 8 h
Uncertainty, � 0.15 per hour
Monetary value assigned to the 625D per person per e2 J/sm2
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are given in Table 2 as well. Both x1 and x2 tend to these earlier
obtained values as the duration of the threat increases. Note that
both x1 and x2 may significantly deviate from the values obtained

2

ig. 2. Flowchart representation of the solution procedure for the finite difference
pproximation (basic decision model).

is set equal to min(TCn,m
s , TCn,m

f
). In the opposite case, the

previously calculated value for Fn,m remains.
tage 4 repeat stages 2 and 3 until m = 0.

Using the explicit finite difference model developed in the pre-
ious section, a software working procedure is presented to solve
he corresponding algorithm. This suggested procedure solves the
esulting system of finite difference equations iteratively, starting
t the end of the time horizon and stepping back through time.
lso, at every point in time and for every estimate of the severity,

t verifies whether the waiting process should be stopped or not,
.e., whether the evacuation process should be initiated or not, by
omparing the evacuation costs to the costs of waiting one more
ime period before taking a decision.

. Case-study

Using the flowchart model of Fig. 2, we developed a computer

rogram allowing dealing with the discrete-time approximation
ersion of the basic decision model with a single shutdown mode
ntroduced by Reniers et al. (loc. cit.). The numerical example
escribed by Reniers et al. (loc. cit.) is used in this section to dis-
uss the proposed approximation methodology. As a reminder, the

f

o

severity, ˛
umber of industrial workers, W 200
robability of release, � 0.417% per hour
iscount rate, � 0.0007% per hour

nput parameter values of the finite difference approximation deci-
ion problem are given in Table 1. Unless otherwise noted, we set
1 = 20, n2 = 180, �y = 0.05, and �t = T/M. The number of time peri-
ds M depends on the anticipated duration of the major accident
hreat, T.

As indicated in Reniers et al. (loc. cit.), the decision-maker may
njustifiedly decide to evacuate the industrial workers for esti-
ates of the severity of the potential major accident within the

nterval [x1; x2].4

Consider the relative length ϕ of the interval where ignoring
he prospect of further information at later stages of the decision
rocess may result in suboptimal decisions, which can be expressed
s:

= x2

x1
(16)

The following conclusions may then be drawn with respect to
he influence of the input parameters given in Table 1, on the mul-
iple ϕ in the case of T → ∞ (see also Appendix A):

a) The relative importance of explicitly taking into account the
value of future information increases as the uncertainty � with
respect to the evolution of the severity of the threat increases;

b) The value of future decision flexibility decreases when a release
becomes more probable (�), or in case less weight (�) is assigned
to future costs;

c) The evacuation costs ci and cd, the required time L to complete
the evacuation, the number of industrial workers W, and the
monetary value ˛ assigned to the severity do not influence ϕ.

The results obtained by application of the software are given in
ables 2–10.

Table 2 shows that both the myopic (x1) and the dynamic opti-
al (x2) evacuation trigger level are a decreasing function of the

nticipated duration of the threat, T. The longer the duration of the
hreat, the higher the probability of a major accident actually taking
lace, and consequently, the higher the probability that evacuation
ill be required after all. Therefore, it is consistent that both x1

nd x2 decrease with increasing T. The dynamic optimal evacua-
ion trigger level x2 always exceeds the myopic intervention rule
1.

The evacuation trigger levels (x1 = 30.6 e2 J/sm2 and
2 = 136.9 e2 J/sm2) derived in Reniers et al. (loc. cit.) under
he assumption of a possibly everlasting threat, i.e., for T → ∞,
or T → ∞. In addition, x2 exceeds this value (136.9 e2 J/sm ) if T

4 Note that x1, respectively x2, indicate the myopic, respectively, the dynamic,
ptimal evacuation trigger level.
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Table 2
Myopic (x1) and dynamic optimal (x2) evacuation trigger level in e2 J/sm2 as a function of the duration of the threat (T)

Duration of the threat (T) T → ∞
18 24 30 36 48 60 72 120 168 216

x1 518.0 330.3 244.7 190.6 141.2 109.9 90.0 60.3 47.0 40.4 30.6
x2 572.5 383.7 298.9 244.7 190.6 164.0 148.4 121.5 115.6 109.9 136.9
ϕ 1.1 1.2 1.2 1.3 1.3 1.4 1.6 2.0 2.5 2.7 4.5

Table 3
Myopic (x1) and dynamic optimal (x2) evacuation trigger level as a function of the
immediate evacuation costs, ci (T = 48 h)

Immediate evacuation costs, ci (million D )

1 1.5 2 2.5 3 3.5 4

x1 57.39 85.63 109.95 141.17 164.02 190.57 221.41
x2 77.48 115.58 156.02 190.57 232.76 270.43 298.87
ϕ 1.35 1.35 1.42 1.35 1.42 1.42 1.35

Table 4
Myopic (x1) and dynamic optimal (x2) evacuation trigger level as a function of the
evacuation costs per hour of shutdown, cd (T = 48 h)

Evacuation costs per hour of shutdown, cd (million D )

0.0025 0.005 0.01 0.02 0.025 0.03 0.05

x1 141.17 141.17 141.17 141.17 141.17 148.41 148.41
x2 190.57 190.57 190.57 200.34 200.34 200.34 210.61
ϕ 1.35 1.35 1.35 1.42 1.42 1.35 1.42

Table 5
Myopic (x1) and dynamic optimal (x2) evacuation trigger level as a function of the
required time to complete a shutdown, L (T = 48 h)

Required time to shutdown, L (h)

2 5 8 16 24 32 40

x
x
ϕ

i
t
t
f
u

i
t
d

t
w
o
i
x
t
s

T
M
u

x
x
ϕ

Table 7
Myopic (x1) and dynamic optimal (x2) evacuation trigger level as a function of the
number of workers, W (T = 48 h)

Number of workers, W

50 100 150 200 250 300 400

x1 544.57 284.29 181.27 141.17 109.95 94.63 70.10
x2 772.78 383.75 257.24 190.57 156.02 127.74 94.63
ϕ 1.42 1.35 1.42 1.35 1.42 1.35 1.35

Table 8
Myopic (x1) and dynamic optimal (x2) evacuation trigger level as a function of the
monetary value assigned to the severity, ˛ (T = 48 h)

Monetary value assigned to the severity, ˛ (million D per person per e2 J/sm2)

0.0001 0.0003 0.0006 0.0009 0.0012 0.0015 0.0018

x1 854.06 284.29 148.41 94.63 73.70 57.40 49.40
x2 1,212.00 403.40 200.30 134.30 99.50 81.50 66.70
ϕ 1.42 1.42 1.35 1.42 1.35 1.42 1.35

Table 9
Myopic (x1) and dynamic optimal (x2) evacuation trigger level as a function of the
probability of a major accident actually taking place, � (T = 48 h)

Probability of a major accident taking place, � (h−1)

0.002085 0.00417 0.00834 0.01251 0.01668 0.02085 0.02502

x
x
ϕ

1
e
(
o

i
m

e
t

r
u

1 121.51 127.74 141.17 181.27 244.69 365.04 735.09
2 172.43 181.27 190.57 232.76 298.87 424.11 812.41

1.42 1.42 1.35 1.28 1.22 1.16 1.10

s rather small, but falls below this value – be it slightly – if the
hreat is anticipated to last during a longer period of time. As such,
he analytical expression which is derived in Reniers et al. (loc. cit.)
or the free boundary triggering immediate evacuation, cannot be
sed to derive the actual trigger level x2.

Furthermore, ϕ increases as the duration of the threat increases,
ndicating that it becomes more important to explicitly consider
he decision maker’s ability to defer the evacuation decision as the
uration of the threat increases.

More importantly, however, we will show in the following that
he majority of the obtained conclusions in Reniers et al. (loc. cit.)
ith respect to the influence of the most important parameters

n x2 remain valid. For this purpose, we consider a threat that

s expected to last for T = 48 h. Table 2 indicates that in this case
1 = 141.2 e2 J/sm2, whereas x2 = 190.6 e2 J/sm2. As a consequence,
he use of a myopic intervention decision criterion may result in
uboptimal decisions for values of x in the interval (141.2 e2 J/sm2;

able 6
yopic (x1) and dynamic optimal (x2) evacuation trigger level as a function of the

ncertainty, � (T = 48 h)

Uncertainty per hour, �

0.05 0.1 0.15 0.2 0.3 0.35 0.4

1 141.17 141.17 141.17 141.17 141.17 141.17 141.17
2 141.17 164.02 190.57 232.76 330.30 403.43 492.75

1.00 1.16 1.35 1.65 2.34 2.86 3.49

t

W
m

T
M
d

x
x
ϕ

1 257.24 141.17 77.48 57.40 49.40 44.70 40.45
2 365.04 190.57 109.95 81.45 70.10 63.43 57.40

1.42 1.35 1.42 1.42 1.42 1.42 1.42

90.6 e2 J/sm2). This is shown in Fig. 3 that plots the total costs
xpected to result from a dynamic optimal (F(x, 0)) and a myopic
G(x, 0)) intervention strategy as a function of the initial estimate
f the severity, x.

The following conclusions can be drawn with respect to the
nfluence of the most important parameters on the dynamic opti-

al evacuation trigger level x2.
Higher evacuation costs ci (Table 3) and cd (Table 4) increase the

vacuation trigger level x2, and hence, stimulate the decision maker
o wait longer before taking this decision.

The evacuation trigger x2 also increases as more time (L) is
equired to complete the shutdown (Table 5). Finally, the more
ncertain the evolution of the estimated severity (�) of the poten-

ial major accident is, the higher x2 will be (Table 6).

Larger costs of deferring evacuation, due to more workers
being present at the industrial plant (Table 7) or higher

onetary values (˛) being assigned to the severity (Table 8)

able 10
yopic (x1) and dynamic optimal (x2) evacuation trigger level as a function of the

iscount rate, �(T = 48 h)

Discount rate, � (% per hour)

0.0003 0.0005 0.0007 0.001 0.0012 0.0015 0.002

1 141.17 141.17 141.17 141.17 141.17 141.17 141.17
2 190.57 190.57 190.57 190.57 190.57 190.57 190.57

1.35 1.35 1.35 1.35 1.35 1.35 1.35
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Fig. 4. Dynamic optimal evacuation trigger level x2 as a function of �, for different
values of � (T = 48 h).
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ig. 3. Expected costs of a myopic (G(x, 0)) and a dynamic optimal (F(x, 0)) inter-
ention strategy (T = 48 h).

ower x2. As such, the decision maker is encouraged to evacuate
ooner.

The influence on x2 of the probability � of the escalation event
ctually taking place is not unambiguous. The more probable an
ccident is, the larger will be the expected costs of deferring the
vacuation decision, while the economic evacuation costs will
ecome smaller due to a shorter expected duration of the shut-
own. Both effects stimulate the emergency manager to decide
arlier on a precautionary evacuation. However, an increase in
he accident arrival rate � also results in higher expected costs of
ealth effects notwithstanding the initiation of evacuation, encour-
ging the decision maker to defer his decision. The ultimate result
ill depend on the relative strength of both opposite effects. Also

he influence of the discount rate � on x2 is ambiguous. The use
f a higher discount rate diminishes the costs of deferring the
vacuation decision. However, it also reduces the total expected
vacuation costs as both the costs of the health effects regard-
ess of the evacuation decision, and the economic evacuation costs
ecrease. In the specific case of a 48 h threat, x2 significantly
ecreases when a major accident becomes more probable (Table 9),
hile the discount rate � appears not to influence this trigger level

Table 10).
As far as the multiple ϕ is concerned, indicating the relative

ength of the interval where ignoring option characteristics may
esult in suboptimal decisions, we can conclude the following.

The larger the uncertainty � with respect to the evolution of
he severity of the threat is, the larger will be the interval where
gnoring option characteristics may result in suboptimal decisions
Table 4).

The multiple ϕ decreases as the time L required to shutdown the
ndustrial facilities increases (Table 5). At first glance, this seems
o be in contradiction to our previous result stating that L has no
nfluence on ϕ. However, if the duration of the threat is finite, an
ncrease in L in fact decreases the ‘actual’ time horizon of the deci-
ion problem. To see this, consider an emergency situation that is
nticipated to last for 48 h. If 2 h are required to stop the indus-
rial installations, a shutdown may only be decided during the first
6 h. A later shutdown decision makes no sense, as it would invoke
osts without producing any benefits (as the workers would have
o stay during the remaining duration of the threat anyway). If 8 h
re needed to complete a shutdown, the ‘actual’ time horizon of

he decision problem is reduced to 40 h, etc. Table 2 indicates that
he multiple ϕ decreases as the (actual) time horizon of the deci-
ion problem decreases. In case of a threat with a possible infinite
uration, a finite increase in L does not decrease the time horizon
f the decision problem, and as a result, ϕ does not decrease.

c
p
i
e
i

ig. 5. Dynamic optimal evacuation trigger level x2 as a function of �, for different
alues of � (T = 48 h).

The evacuation costs ci (Table 3) and cd (Table 4), the number
f workers W (Table 7), and the monetary value ˛ assigned to the
everity of a potential major accident (Table 8) have no effect on
. Note that also the probability of an actual accident � (Table 9)
nd the discount rate � (Table 10) appear to have no influence on ϕ.
gain, this is in contradiction to the conclusions drawn before (in

he case of T → ∞). However, it can be shown (cfr. infra) that higher
robabilities of an accident actually taking place do result in smaller
alues for ϕ, if the uncertainty with respect to the evolution of the
everity of the threat is large enough. Fig. 4 shows that the lower the
robability of an accident is, the more sharply x2, and hence, ϕ, will
ise with �. This result is in agreement with the continuous-time
ecision model discussed in Reniers et al. (loc. cit.). Fig. 5 shows
hat the larger the uncertainty � with respect to the evolution of
he severity of the potential accident is, the more sharply x2 will rise
hen � declines. The multiple ϕ decreases with increasing values

f �. For small values of �, the influence of � on ϕ is very small.
owever, the larger the uncertainty �, the more significant this
ffect is.

. Conclusions

The advantages and disadvantages of some widely used numeri-
al methods were briefly summarized with their application to the

recautionary evacuation decision problem in mind. Explicit and

mplicit finite difference methods transform a partial differential
quation into a system of difference equations that can be solved
teratively. The intuitively more appealing binomial or trinomial
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[11] J. Hull, A. White, Valuing derivative securities using the explicit finite dif-

ference method, Journal of Financial and Quantitative Analysis 25 (1990)
87–89.

[12] L. Clewlow, C. Strickland, Implementing Derivative Models, John Wiley and
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attice models can be considered as special cases of the explicit
nite difference scheme.

Using a continuous-time optimal stopping framework and its
nalytical solution in the particular case of a threat with possibly
nfinite duration, an explicit finite difference approximation is elab-
rated. The latter allows dealing with the precautionary evacuation
ecision problem in the more realistic case of a threat with finite
nticipated duration.

A working methodology is presented to solve the resulting finite
ifference algorithms. This way, major risk decision software can be
eveloped to analyse evacuation decision situations under various
ssumptions with respect to the anticipated duration of the threat.

ppendix A

This appendix verifies for the case of T → ∞ the influence of the
ost important parameters on the multiple ϕ, indicating the rela-

ive length of the interval where suboptimal decisions may result
n case the prospect of further information at later stages of the
ecision process is ignored.

An increase in the uncertainty with respect to the evolution of
he severity of the threat (�) increases the multiple ϕ:

∂ϕ

∂�
=

2
(

� +
√

�2 + 8(� + �)
)

√
�2 + 8(� + �)

(√
�2 + 8(� + �) − �

)2
≥ 0

An increase in the probability of the major accident actually
aking place (�) and in the discount rate (�) reduces ϕ:

∂ϕ

∂�
= −8�√

2
(√

2
)2

≤ 0
� + 8(� + �) � + 8(� + �) − �

∂ϕ

∂�
= −8�√

�2 + 8(� + �)
(√

�2 + 8(� + �) − �
)2

≤ 0
s Materials 164 (2009) 490–496

The other parameters (ci, cd, L, ˛ and W) have no influence on ϕ,
s

∂ϕ

∂ci
= ∂ϕ

∂cd
= ∂ϕ

∂L
= ∂ϕ

∂˛
= ∂ϕ

∂W
= 0
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